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ABSTRACT o,
e

The goal of structural synthesis is to automate the design
process by use of digital computers., In general. the structural
synthesis problem is, given a set of load conditions and side
conditions for a structure, find by systematic means, a structure
which will support the loads, satisfy the side constraints, and
maximize the merit by which the structure is to be evaluated,

The structure dealt with is an integrally stiffened waffle
like plate. Six design parameters are employed. These are
total depbth, thickness of the sheet, stiffener spacing in two
directions, and stiffener width in two directions.

Several attempted methods of synthesis are discussed. Data

is presented for five design problems,



ACKNOWLEDGEMENT

The authors eXpress their appre¢iation and gratitude to: =~

The National Aeronautics and Space Administration, who
sponsored the research program from which this report

evolved. (Research Grant No, NsG - 110-61)

The Case Computing Center, and in particular Dr. George

Haynam, for assistance in the computational works

The many people of the Engineering Design Center and
in particular the Engineering Synthesis Group for their
willingness to discuss the project and for their

suggestions,

-iiie-



o o
™

o’
o

)
.

N

w

= o =5 oo o

e

NZ
d

=

SYMBOLS

x dimension of plate

y dimension of plate

Stiffener spacing in x direction

Stiffener spacing in y direction

Bending stiffness x direction

Bending stiffness y direction

Torsional stiffness

Modulus of Elasticity

Iotal depth of plate

Intensity of resultant normal force - x direction
Intensity of resultant shear force

Intensity of resultant normal force - y direction
Distance of travel

Sheet thickness

Width of stiffener - x direction

Width of stiffener - y direction

Total weight of plate

Steep descent increment
Constraint surface tolerance

Poissont's Ratio

Weight density

Yield stress

Direction cosines



TABIE OF CONTENTS

Page
ABSTRAG T [ ] . L L L -« . e L d L L4 L ] L ii

ACKNOWIEDGEMENT e o o o ¢ o o o o o o iii

Sm OLS o L] L L] L 4 [ ] * » L ] L ] [ L] o j-v

I Introduction . P . ° ° . . . . . .
JI The Waffle Synthesis Problem o+ o« « o« &

ITT Steep Descent o« « o o o o o o o o

o Oy W

IV Altermate StepP &« o« o o o o o ¢ o @
V Synthesis Technique .+ « « o« « o« « o 15
VI Numerical ResulisS ¢« o o « o « o o« o 21
VII Discussion of Numerical Results o+ o« « o 3L
VIIT Conclusione o o ¢« ¢ o o o o s« o « o 37
Figures o o o« « o s o o o o o « o bWl
References « o o+ o o o o o s o oo U9
Appendix I e o o o« o ¢ s o ¢ o o ¢ « o o o o 50

Appendix IT « o o o o o o o o o o 59



Chapter I

INTRODUCTION

The goal of structural synthesis is to automate the design
process by use of digital computers. In general. the structural
synthesis problem is, given a set of load conditions and side
conditions for a structure, find by systematic means a structure
which will support the loads, satisfy the side conditions and
maximize the merit by which the structure is to be evaluated., The
side conditions may or may not dictate the type of structure to be
used, At this stage in the development of synthesis techniques, it
is assumed that the type of structure is determined by the side
conditions or that several separate studies may be made on differ=-
ent types of structures. In most cases some of the design pa=-
rameters are also predetermined.

In the case presented here the type of structure which has
been selected is a waffle=-like plate with integral orthogonal
stiffeners., The successful development of a synthesis capability
to minimize the weight of symmetric waffle plates has been reported
in Ref. le This study included three independent design parameters,
stiffener spacing, sheet thickness and stiffener thickness. The
work presented here extends this capability to a more general one
with more design parameters. This extension allows better designs
to be obtained and gives an indication of the problems involved in
developing synthesis techniques for problems of higher order in the

design parameters,
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The number of design parameters employed here is sixe. These
are stiffener spacing in two directions, width of both sets of

stiffeners, the total depth of the plate and sheet thickness.
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Chapter I

THE WAFFLE SYNTHESIS PROBLEM

The structure dealt with is the waffle plate shown in Fig. l.
The design parameters as shown here are sheet thickness (ts), total
depth (H), stiffener spacing in the x directimn(bx), stiffener
spacing in the y direction (by), width of the x stiffener (twi)’
and width of the y stiffener (tw )o The over=-all dimensions of
the plate a and b are fixed and ZQ is the material of the plate.
The plate is subjected to inplane loads only. The positive loads
are tension in the x direction (Nx)’ tension in the y direction
(Ny), and shear on the positive x face in the positive y direction
(ny). These are shown in Fige. 2.

The structure may be required to carry several different
combinations of loads, That is, the plate may be subjected to
one set of loads Nx’ Ny’ and ny at one time and other sets of

loads Nx’ N_, and ny at other times., An acceptably designhed

y
plate must carry all of these, The computer programs written

will handle up to five load conditions,.
The criterion of merit used for evaluation of the design
is the minimization of the total weight. The total weight is

given by

t tw b

X W
W =pabH[1-(1m-H—§)(l--b-—)(l-—5z)] <2o1)
y X -
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The analysis used to predict the behavior of the structure is
given in Appendix I. In writing the computer programs this analysis
has been put in the form of behavior functions (seeRef. 1) By rearranging
the failure conditions for each mode of failure, behavior functions
are obtained in which the condition for satisfactory behavior is that
each behavior function must be less than or equal to one. In
addition to satisfying the behavior function conditions the designs
obtained must also satisfy the side conditions. These are also
given in Appendix T.

To solve the problem given above it is convenient to think of
it in terms of a design space, This design space is formed by using
each design parameter as a coordinate in the space. When the
problem is thought of in this form, the behavior functions and the
weight function, become hypersurfaces in the space. The side
constraints on the design parameters become hyperplanes. All of the
above are of dimension n-l where n is the number of design pa=
rameters (6)s Since all of these are of dimension n-l the term
hyper -'will be dropped and the terms surface and plane will be
used here,

Pictured in this manner the design problem is a problem of
moving in a design;space along a path which will converge to the
minimum weight design., In general, the procedure used in doing
this is to start with a design which lies in the acceptable region

of the space. This is a region where none of the constraints
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(behavior or side constraints) are violated by the designe. Then
move in a series of steps toward the optimum, Design space nomen=
clature is presented in Fig. 3.

A1l the redesign processes presented here are in the same
forms These are methods of alternate step and steep descent. ‘If
the present design point is a free point some form of steep descent
is used, This is a move which decreases the weight. A free point
is one which is not in violation and not within a certain given
tolerance of any of the constraints. The second type of move, the
alternate step, is made from a bound point. This move changes the
design while maintaining a constant weight., The object of this
move is to obtain another free point. A bound point is one where
the design lies within a given tolerance of one or more constraints.

A1l the moves in both steep descent and alternate step are
made with the same means of modification. This is to add to each
of the present design parameters a change which is calculated by
multiplying the corresponding direction cosine by the distance of

travels The equation for this is

(57 - 5}« « (o) e

where the Dq+1' are the new values of the design parametersg the
Dg are present values of the design parameters; the (pp are the

direction cosinesj and t 1s the distance of travel,
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Chapter III

STEEP DESCENT

Three different directions of steep descent are used in the
different programs. One is parallel to the ts axis and is made by
reducing the weight by an increment and solving for the correspond-
ing value of ts’ holding the other design parameters constant. (See
section l.,2) The second is along the negative to the gradient to

the weight surface, (See Fig. i) The components of the gradient

x;'5\.'.[‘83
t‘W tW
oW _ X
& -emla-5) a-5D)]
s y x
tW t'W
oW p'e
S ocea 1-a-gH)a-<h) ]
N X
t . %
oW = pab H y s X
3b 5 7 (1-5) Q-—5=)
X x y
(3.1)
tw t tw
P o-edH X (g8 .T)
3b B B " 3
y y y X
% t'w
W p ab H __8 Y
3t ) @ -g) @ -5)
W ¥ X
tW
W _ p abH _ .5 p
5t~ b L-7) Q-5
W X y
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The third is to move from the present design point toward the point
in the space (satisfying side constraints only) where all design
parameters are such as to give a minimum weight. This is the point
of minimum sheet thickness, minimum total depth, minimum stiffener
widths, and maximum stiffener spacing. This method is used only as
a first steep descent direction in later programs, Alternate Base
Planes and Tangent Plane Methods. (See Fige 5)e

The procedure for moving along all of the above directions
is the same, First an arbitrary increment is picked (this is input
data)s Then the new design is calculated and checked for design
parameter and behavior function violation. If no violation is
found the design is accepted as the new design point, The increment
is then doubled and the new trial design checked. If this is an
acceptable design, it becomes the new design point. This process
is continued wntil a violation is obtained. Here the distance of
travel is cut in half the new trial design being half way between
the present acceptable design and the last unacceptable designe.
This is continued until an acceptable design is obtained. The
acceptable design becomes the new design point., Starting from
this point the distance is cut in half again and this trial checked,
If the design is good it is accepted and a new trial proposed again
halfing the distance. If the design is not good a new trial is
proposed by taking halflthe last distance to the last acceptable

designe This, then, continues until either a new design point is
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obtained which is within a certain prescribed tolerance of a con=-
straint or the distance of travel becomes too small to be signifi-
cant, This last design is accepted as a bound point. (See Figs.

i and 5)

It should be noted here that in using the last two methods
of steep descent, it is possible to move away from several of the
side constraints, For this reason when a design is bounded by any
of these side constraints, it is not regarded as bound., These
constraints are the upper bound on H, the lower bound on bX and b

y

and the compatibility bounds between tw and by’ and t - and bxe
X y
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Chapter IV

ALTERNATE STEP

lisl Distances to Side Constraints

Since a new trial design is obtained from the equation

{D%*l} - {qu} P {cpp} | (2.2)

the distance to any one of the design parameter bounds may be
obtained by setting D%+1 equal to the bound value and solving for
t using the present values of D% and ¢p (The direction cosines
¢p where p goes from 1 to 6 correspond to ts’ H, bx’ by’ th, and
tw o respectively). The distances to the bounds are given by

the following equations:

Maximum Depth

b o= (ko)

Maximum y Stiffener Spacing

(b )max = b
t = b J (ho2)
.
Minimum x Stiffener Spacing
o - (@ )min
t o= = = (L4e3)
or
b, = %
b wy
B e (holt)



The first of these is to the fixed bound(bx)min but the second
is the compatibility bound between bX and tw « Both of these
must be checked since either may give the shorter distance,

Similarly for the minimum y stiffener spacing

b= (b)) .
t = y VA 4 (hog)
-(ph
or
by -t |
t = X (ho6)
¢ = 9

Minimum Width of Stiffeners:

X direction

%, - (t.)
wk wx min
b = s (ho?)
5
y direction
%, - (t.)
W W .
t = b -0 ymn (ho8)
6

Minimum Sheet Thiékness

by - (ts)min
t = o (h09)
1

Minimum Depth

S
t = — or (Lel0)
¢ -9

Z_ (when H is dependent variable)
Al (Lell)
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(when t, is the dependent

2 variable) (Lhe12)

The above distances do not all apply simultaneously. If
one of the direction cosines which appears in the denominator
corresponds to the dependent variable (i.e0y the variable being
used to adjust the weight so that it remains constant) the ex-
pression for t is not valid and is skipped. Since in the case of
the H, ts compatibility bound it is possible to encounter the
bound when H or ts is the dependent variable substitute distances
are used here, When H is equal to ts the plate is solid and‘

_ _ W
H o= % = o ab

Tt is also possible to encounter the stiffener spacing
stiffener width compatibility bounds when one of these variables
is the dependent variable, but this condition is encountered
infrequently and is only taken care of by rejecting an incorrect
design using a design parameter side constraint check.

The shortest of the applicable distances are the ones which
bound the design parameters in the given direction. Two values
are obtained; one in the positive and one in the negative direc-
tiones (See Figo 6).

After the maximum distances of travel are obtained the trial
distance is then selected and the new trial design computed. Two

methods are used in the different programs to select this distance,
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One is to use fixed fractions of the total distance of travel and
the other is to use random fractions. Because of the fact that it
is better to use a large number of random directions checking only
a few designs along each direction, it is felt that using random
fractions is the better method. This makes it possible to obtain

a more complete coverage of the space.

L.2 Projection to Weight Surface

In all of the synthesis techniques described here but
Compromise II, a projection is made from a proposed design point
to the weight surface parallel to one of the coordinate axes. This
axis is the axis of the dependent variable in alternate step. The
value of this variable and then using the value of the proposed
design of the other five variables in this equation.

These equations are the following:

tW tW tW tW
W - X v X v
i ot 5ot ) ]
v x y X
t =
8 t t
WX W
@ -5 a- )
g X
£ t
W pid y
pap "t U ) (-5-)
H =
X Sy
1- Q--2) a-2)
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W
X
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b, = T
[(w -t )/ (" t)]-—E—
0 ab s T Vs by
tW
fa, - L)
b = = £ (he13)
w
W - y
(555 = b5/ - ) v
t
W r
Jk pab ts) / (- ts) T o
= X
W, by’ %
p:8 i W
L @ - =)
y
W.
(g = tg) / E -ty - —5
t_ = b L
) X t
y W
1 - —=)
y

Le3 Direction Scaling

In the later programs, Alternate Base Planes Method and
Tangent Plane Method, the random numbers obtained are not used
directly to determine the unit random vector, but are first
multiplied by a scale factor corresponding to the appropriate

design parameter. (see Ref. 2) Two methods of scaling are used,
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but only the first is used in the tangent plane method.

The first method is to scale them according to the range
on the design parameters. This does not take into account the
compatibility bounds but only the fixed maximum and minimum bounds,

thus the scale factors are:

H

o (ts)min for H and ts

(bx)m,X - (tw;min for b and t_

y
(o) .= ()
X

. for b and %
v’ max w min y W

X
The reason behind this type of scaling is to obtain a uniform
distribution of search directions over a region which is bounded
by differing dimensions. A two dimensional example is presented
in Figes Te This figure does not present data but only illustrates
the effect, With no scaling the directions are characterized by
a uniform angular distribution about the design point. It is thus
difficult to investigate designs near (bx)nﬂn and (bx)max° The
scaled directions yield more directions of travel in the longer
dimension of the space and allow more designs to be investigated
at the extremities of the parameters with the larger range.

The second method is to choose scale factors based on the
relative magnitudes of the final design parameter of previous
synthesis problems and on the range of the parameters of the

present problem. These factors are the input to the programe
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Chapter V

SYNTHESIS TECHNIQUES

5.1 Several different schemes were tried in an effort to obtain
an efficient means of optimization., A discussion of these is
presented here in order of their development. For the purposes of
discussion these have been given names, These are Compromise II,
Sheet Thickness Method, Modified Sheet Thickness Method, Alternate
Base = Planes Method, Point Saving Method and Tangent Plane Method,
all of these methods assume that relative minima with respect to
the weight surface do exist and all employ some type of search
technique for the alternate step move.

In each of the alternate step techniques a selection of a
random direction in the space is used after this line is deter=-
mined a selection of a distance along this line is made, Since
the side constraints on the design parameters are all linear they
are hyperplanes in the design space, the acceptablé region with
respect to the design parameter bounds does not possess relative
minima, Because of this it is possible to solve for the maximum
possible distance of travel by taking the minimum of the distances
to the design parameter bounds. This is done separately in both
the forward and reverse directions. Distances of travel for the
redesign are then made as fractions of the distances determined

as above,
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5.2 Compromise II

This method is similar to the Compromise II method which is
described in Ref. 1. The differences being the method of maximum
distance selection, the accelerated steep descent, and the number of
design parameters. A steep descent in the direction of the nega=-
tive of the gradient to the constant weight surface at the present
design point is used. (sée Steep Descent) No distance of travel
is solved for but an arbitrary increment is used. The alternate
step is made by solving for chord distances across the constant
weight surface in a plane passing through the ts axis and a random
vector in the base normal to the ts axise

This direction of steep descent is much better than the
direction used in the sheet thickness method, i.e., parallel to the
ts axise The alternate step is complicated and may yield ine
determinate distances in cases where the chord is very close to
lying in the weight surface, For these reasons no atbtempt was
made to obtain data from this program and another means of alternate

step was adopted,

5.3 Sheet Thickness Method

In this method the steep descent is made parallel to the ts
axis. The alternate step is made by changing the design parameters
in the base normal to the ts axis and then solving for the value
of ts to project the design on to the constant weight surface

(see Section L.2)
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This method of steep descent was found to be very in=-

efficient,

5.t Modified - Sheet Thickness Method

This method combines the better features of Compromise II
and the sheet thickness method. The gradient steep descent is
used here with the alternate step projected from the base normal
to the ts axis,.

This method is much better than the sheet thickness method,
because of the steep descent. However, because of the method of
projection, the alternate step does not give a uniform search of
the weight surface., For this reason it is possible for the
program to arrive at a design point where the search is primarily
carried out over a small region of unacceptable designs. When
this occurs it is practically impossible to find a new acceptable

design point,

55 Alternate Base Planes Method.

In an attempt to solve the problem encountered in projecting
from one base plane to the weight surface, the program was changed
to alternately project from all six of the possible base planes,
This program is the same as the previous one, with gradient steep
descent and base plane alternate step except that the base plane
used each time is changed. This is done in cyclic order starting
with the base normal to the ts axis and proceeding in the follow-

ing order: t_, H, b_, by’ th and twy (see Fig., 8). This order
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is not used in the special case where (H - ¢ ) < ts < He
In this case projection always takes place parallel to the ts
axis. The direction cosine of H is set to zero and consequently
tS will change by only a very small amount in alternate step.
This is done in order to allow a search of only the bx’ by’ t@x,
and tw parameters. The proper combination of these parameters
must tg;n be found so that the gradient steep descent will take
the design away from the ts’ H compatibility bound,.

The first steep descent which moves directly toward the
minimum weight corner is used to avoid hitting the ts’ H compati=-
bility bound and in most cases is successful, When it is not

successful finding the right conbination of bx’ by’ tw s and tw

X y
can be time consuming.
This program is much more efficient than the ones described

previously and is the one used to obtain the numerical results

presented in the following section,

5.6 Tangent Plane Method

This method is another attempt to improve the search of the
weight surface, Random directions in the design space (six
components) are projected onto a plane tangent to the weight sur-
face. The random vector is given by ﬁ and the tangent vector, 5,
is then given by T = R - (R ° n) n , where n is the wnit
normal to the weight surface. Here again after the distance of

travel is selected, the design must be projected in some manner



from the tangent plane to the weight surface, The way in which
it is done is the same as in the previous method. That is to
project parallel to one of the coordinate axes, the axis used

being changed each time.

5.7 Point Saving

Since all the synthesis methods used here are search
techniques, it is desirable to make use of as much of the informa-
tion obtained in this search as possible., In all of the methods
described previously the only information which is used is the
present design point and the location of the design parameter
bound s,

In this method acceptable design points are stored and used
to generate directions of travel, The directions are the wvectors
between the present design point and the stored design points,
These directions are then used in the same manner as the random
directions. This method is used in conjunction with both the

tangent plane method and the alternate base planes method. This
| is done only after the search using random directions has failed
in a sufficient number of directions, (10).

The motivation for the development of this method is the
desire to be able to locate possible !'pockets ' or troughs'!
in the acceptable region of the design space., These are regions
where the designs continuously remain in the acceptable region .

below the occupied weight contour. The idea is that a direction



of travel between two points in the "same "pocket"LOT ""trough !
might serve to cause a search through the'pocket}' or that a
direction of travel from one pocket to the next would locate a
pocket which had been previously searched but which might yield
better designs, and would be difficult to locate by using random
vecters,

This method caused no significant change in the operating

efficiency.



Chapter VI

NUMERICAL RESULTS

Four synthesis problems are presented here,

Results obtained

by starting from two different design points are presented for each

case,

condition, i.e.

e,

N
Xy,

Similarly each column

represents the behavior for

Each column in the applied loads matrix represents one load

N cee N
Xz Xn
N o0 € N
Y, Y
N o e TJ
Xy, Xy,

in the behavior function matrix

one load condition, i.ee

GY, (Dp)
SX, (Dp)
s, ()
GBF, (Dp)
ISP, (D)

1BK, (D)

LBY, (Dp)

GY, (Dp)

st, (0,)

ST, (@)
GEF, (D)
L5P, (D))
LBY,, (Dp)

LBY,, (Dp)

oo

o0

coe

¢r, (D))
sx, (©)
st, (D))
GBF,, (D))
IBP, (D))
IBX (Dp)

IBY (Dp)




DD

where
GY (Dp) = gross yield
SX (Dp) = gtiffener yield (x direction)
SY (Dp) = stiffener yield (y direction)
GBF (Dp) = gross plate buckling
IBP (Dp) = Jocal sheet buckling
LBX (Dp) = 7local stiffener buckling (x direction)
1LBY (Dp) = local stiffener buckling (y direction)

The dimensions of the plate are all given in inches and the
weight in pounds. A behavior function is considered bound when
it is within 1 + e , and the design is acceptable when the
behavior function is less than 1 + e «

The upper bounds on the design parameter are

(" H W

(H)

max
() e
(%73 = S O

b
y

b
N

The lower bounds on the design parameters are




R S

(t. )

w ' min

A

In the above equations, (bx) max 204 (by)max are the

maximum stiffener spacings consistant with equivalent plate
analysis and are taken to be a/5 and b/5 respectively; by,

and bLy are the larger of (bx)min and t_ , and (by)min and

y
tWX respectively. Note that (H) naxc? (ts)min’ (th)min s
(t.) . (b)) and (by)min may be assigned based on

wym:m ? x’min

fabrication limitations.,



CASE (1-3)
INPUT DATA
o = 0,101 1bs/in® o, = T2 ksi
po= 04,32 a = L0 in,
e = 0.,0001 b = 30 in,
5, = 0401 E  =10,5x 10° ksi
[ -0.30 |
[N] = 0,140
| 4020
(ts)min = 0,005 H.. - 0,80
(thmin = 0,010 (bx)min = 2,00
(tw;min 0,010 (by) min = 2¢00
TRIAL DESIGNS
Point A Point B
b, = 0.30 b, = 0.30
H = 0,8 H = 0,80
b, = 5.00 b, = 5.00
b, = 5.00 b = 5.00
th = 1,00 th = 0425
t = Ll00 t = 0425
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CASE (1-3)
FINAL OUTPUT
Point A Point B
t, = 0,0385 b, o= 0,0355
H = 0,8000 H = 0,7828
b = 2,0001 b = 2,0000
X X
b = 2,846 b = 2,0002
- 1,65 v
t. = 0.0778 t, = 0.,0260
X X
to= 0,0656 b, = 0.0909
y v
W = 10,1305 W = 9,51h56
[ 0.1486 | [ 0.1609 |
0,0702 0,0921
0.,0875 0.0799
[?F A]= 1.,0000 [?F B] = | 049999
06,9992 049999
0.0870 0.9823
0.1763 ;O 0711
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CASE (1-T)
INPUT DATA
o = 0,160 lbs/in® o, = 120 ksi
B = 0,29 a = 70 in,
€ = 0.000l b = Llo jIlo
60 = 0,005 T = 16 x 10° ksi
[ 0.80 |
[N] = 0.00
0,00
(ts)min = 0,005 Hox = 2450
(tWQmin = 0,010 (bx)min= 2,00
(tw;min = 0,010 (by)min= 2,00

TRIAL DESIGNS

Point A Point B

t = 0,200 t = 0440
S 5]

H = 2,50 H = 2,50

b = 6,00 b = 2,00
X X

b = 13,00 b = 2,00
vy y

1, = 1,00 4 = 0450
W W
X X

.tW = 1,00 tW = 0.50



CASE (1-T)
FINAL OUTPUT
Point A Point B
t, = 0.0308 b, = 0,0LL7
H = 1.0103 H = 1.149%
b, = h.8L20 b, = 240058
b = 2,0002 = 3.2638
5 by 34263
t_ = 0.0L71 % = 0.0L0L
X WX
tw = 0,0337 tW = 00,0100
¥y ¥
W o= 27.11h W = 28,578
[ 0.1237 0.11113
0.,1237 0.1113
0.0000 1 0.0000
[BF a)= | 0:9967 [BF B] = | 0.9808
069999 049950
0.9567 09768
0.0000 0.0000
_ i - o
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CASE (1 - SL)
INPUT DATA
o = 0,101 1bs/in> o, = T2 ksi
K = 0032 a = 100 in..
€ = 0.,0001 b = 20 in,
5, = 0.005 E = 10.5 x 10° ksi
~0450
[N] = =050
+0,50
(*os)mlerl = 0,005 How = 2,50
(tw})cmin = 0,010 (bx)min= 2,00
(tw;min = 0,010 (by)min= 2.00
TRIAL DESIGNS
Point A Point B
b, = 0430 t, = 0,50
H = 1,00 H = 1,50
b =10.00 b, = L.00
b = 24,50 b = 3,00
- o5 v 3
b, = 1.25 % = 1,00
X X
b, o= 5,00 t. = 1.00
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CASE (1 - SL)
FINAL OUTPUT
Point A Point B
t, = 0,0522 b, = 0.0499
H = 0.9289 H = 0.7901
b, = 2464k0 b = 2,0330
b = 2.4510 b, = 2.9877
v 4 |
t, = 0.0343 £ = 0.,0305
WX WX
twy = 04,0337 twy- = 0,04lily
W = 15,243 W = 184k
[ 0.2519 | [0.2661; |
041077 041208
041096 0.1051
[BFA]= 0.8530 [BF B] = | 0.995L
1..0000 049999
0.9773 0.9432
0,9992 | 01187




CASE (3-2)

INPUT DATA

(ts)min
(tw)min
X

(tw)min
y

04276 1bs/in"

04283
0.,0001

0.01

[ -0.30

-O QBO
0.00

——

I

0,005

0,010

0,010

il

TRIAL DESIGNS

Point A
ts = 0,40
H = 0050
bx = 5,00
b = .OO
- 5
tw = );,00
X
tw = }1,00

+0 450

"‘O .60
-1,00

o, = 150 ksi
a = 70 ine
b = 50 in,
B = 30 x 103 ksi
~1,00
0,00
- O.L‘.O
Hmax = 0050
(bx)min = 2,00
(by)min = 2,00
Point B
ts = 0.h0
H = Q.SO
b = 2,00
X
b = 2,00
y
tW = _1095
p'e
% = 1,95
Yy



CASE (3-2)
FINAL OUTPUT
Point A Point B
t, = 0,047k t, = 0.047L
H = 045000 H = 04,5000
b = 5.2688 b, = 20077
L 3.8928 b, = 5,109
th = 0,660L th = 0,8678
twy = 0.,95hk tWy = 0.363L
W = 185,75 W = 185.76
[0,0158 0,218l 041111 ]
0,0161 0.0268 040537
0.,0155 0,0309 0.0000
[BF A] = | 0.8)26 046107 1.0000
062607 043687 0.3580
0,0001 ~0,0002 0,0003
| 0.0000 0.,0001 00000 |
[0,0158 0.21485 0.11117]
0.0160 0,0268 0.,0536
0.015L 0.0309 0,0000
[_BF B] = | 048430 0.6412 1.,0000
0.0935 0,0480 0.2755
0.0000 ~0,0001 00002
| 0.0003 0.0006 040000 |




CASE (3-2)!
INPUT DATA
p = 0,276 lbs/in® o, = 150 ksi
b o= 04283 a = 70 in.
e = 0,0001 b = 50 in.
5. = 0.0 E =30 x 10° ksi
[=0,30 +0450 -1.00 |
[N] = ~0630 0,60 0.0
OQOO -1.00 —OQ,J.O
(b )y, = 0005 H.. = 2.50
(’ow})Cmin = 0,01 (bx)min = 2,00
(tws)rmn = O'O]- . (by)mj_n = 2000
TRIAL DESIGNS
Point A Point B
ts = O.LLO 'bs = 0.,40
H = 2350 H = 2050
b = 5,00 b = 2,00
X X
b = 5.00 b = 2.00
y ' y
t = 11,00 t = 1,95
WX WX
'bw = u.oo E tW‘ == 1095
y v



CASE (3=2)!

FINAL OUTPUT

Point A Point B
t, = 0.0L32 bty = 00475
H = 0,9866 H = 1,0128
b, = 2,050 b, = 2.0L51
b, = Le6627 b, = 9.0909
th = 0,0726 th = 0,1318
twy = 0,0287 tWy = 0,0291
W = 68,499 W = 72,159
[0,0350 0,289 01570
0,0345 0,0576 0.1151
040354 0,0709 0,0000
[BFA]== 0.8262 0.6167 0.9783
063552 0.1971 1,0000
040508 ~0,0816 041692
| 0.4586 0.91.72 0,0000 |
[0.,0326 042615 0.1L57]
040325 0,052 0.1085
0,0327 040653 0,0000
[BFB] = |0.7616 045138 0.8987
003125 01357 1.0000
0.01h9 ~0,02148 0,0497
| 0611597 0.919Y 0,0000_
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Chapter VII

DISCUSSION OF NUMERICAL RESULTS

7.1 Comparison with Symmetric Synthesis Results

Two of the cases presented here offer a comparison with the
symmetric synthesis results reported in Ref., 8. These are cases
(1~3), and (3=2), In Case (1-3) a weight saving of 13 percent is
obtained from 10.9L 1bs to 9,54 1bs. and in case (3=2) only a 0,87
percent weight saving is obtained. It is felt that in cases where
the loading and the overall plate dimensions are more unsymmetric
a higher weight saving could be obtained. By looking at Case
(1-T) it is seen that unsymmetric designs are obtained. This
case 1s loaded in one direction only. If the plate is forced to
be symmetric it might be expected that there would be a large
weight penalty. It should also be noted here that the stiffening
in both final designs is in the longitudinal direction and that for
point B, t_ is at its lower bounde In Case (1-SL) with a
symmetric load and highly unsymmetric over all dimensions the
final design points are also wnsymmetric but points A and B are

wusymmetric in opposite directions.

7«2 Influence of the Depth Parameter

All the cases presented here show the influence of H on the
design of waffle plates. The maximum depth is set reasonably high
in all cases except (1=3) and (3=2). In the cases with the

large maximum depth it is seen that the full depth is not
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utilized in the final design and that in these cases the final
design is limited by gross buckling, local plate buckling and
stiffener buckling in at least one direction.

In case (1-3) for point A the full depth is utilized but for
point B it is not but stiffener buckling is an active constraint for
both designs.

In Case (3-2) with a low depth limit the full available depth
is utilized but stiffener buckling is not active and the only
active behavior constraint is gross buckling in the third load
condition,

Case (3=2)! is the same as case (3=2) except for the large H
bound in Case (3-2)1, Two facts should be noted about these cases,
One is that by increasing the depth from O.5 inches to approximately
1,0 inches it is possible to decrease the weight from 185.75 1lbs to
68.5 1bs, but without using the full depth available. The other
is that in case (3-2) only the third load condition is active but
in Case (3-2)' stiffener buckling in the second load condition is
active along with local plate buckling and gross buckling in the

third load conditione.

Te3 Convergencé

Case (3-2) is the only case presented here where the two
synthesis paths can be considered to have converged to the same
design. At first glance this does not seem to be true but on

examination of the E%— ratios for both points they are the same.
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t t
WX W
-—.6-—' = 1.70 ——z—b = 1.81
y X

This is because the final design is gross buckling limited and only
depends on the equivalent platé stiffness, In this case any design
with these ratios for t_ /b and b /bX and the same values of the
other design parameters ihich does nzg cause violation of other
constraints would be an optimum,

The reason that Case (3-2) converged while the others did not
is that it is bounded only by one constraint while the final designs
obtained for the other cases are bounded by more than one constraint.
In reasonable running times the program is thus not capable of

moving in the alternate step mode once the design is highly con=-

strained.



=37

Chapter VIIT

CONCLUSIONS

8.1 Capability of Program

The development of a synthesis capability for six parameter
waffle plate design can be considered partially successful. It
cannot be considered completely successful because of the inability
to achieve convergence to the same design in all cases., However,

the designs obtained can all be considered efficient designse

8.2 Relative Minima

While it is not shown that relative minima do exist in the
design space, it has been assumed that they do., This seems only
likely since the existence of relative minima was shown by plotting
in the three dimensional problem. (see Ref., 1) The inability to
converge can be interpreted as the inadequacy of the methods of
alternate step to solve the relative minima problem, This is not
surprising when one examines the way in which the relative minima
problem is handled. This is to randomly search a subspace of
dimension n - 1 = 5, Thus reducing the problem of searching a
sixth dimensional design space to one of searching a finite
number of fifth order spaces, Keeping this in mind, what has
happened here might be expected., That is if the relative minima
pockets are large or if there is a large acceptable region near
the optimum these methods would be expected to work with some

success, This is seen to be true in case (3-2) where there are
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many optimum designs. In the other cases presented, more than one
constraint is active and achieving a redesign which is not in
violation is much more difficult. Thus it is not practical to

randomly search an n- 1 subspace when n is as high as sixe.

8.3 Alternate Step Methods

In order to solve the relative minima problem using search
methods éf alternate step, better methods of selecting the alternate
step direction must be developeds A useful approach to this problem
is to look at it from the point of view of eliminating as many un-
desirable designs as possible rather than trying to develop a method
which will select the one best direction. Several observations can
be made concerning random directions which should be considered in
developing methods of this type.

The first is that the distance traveled along any direction
should not be so great as to take the design from the acceptable
region with respect to design parameter bounds., This is done here.
(see Chapter IV),

The second is the projection of the direction on to the merit
surface, If the directions are all selected in one plane, the
angle between this plane and the tangent to the merit at the point
in question has the effect of distorting the distribution of the
selected directions. This is the reason for using six planes of

projection in the Alternate Base Planes Method and the reason that
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six random direction cosines have to be used in the Tangent Plane
method instead of only five,

The third is direction scaling., Since in any problem the
design parameters may vary over different ranges in order to uniformly
search the acceptable design parameter region the direction cosines
must be scaled according to these variations. While the overall
design parameter variation remains fixed, the acceptable design
parameter variation may change during the solution of the problem
because of their interdependence through the merit equation. This
is the reason for adopting the second method of direction scaling
mentioned in section li.3. In this second method no definite
criterion is adopted to select scale factors and therefore it
relies on the intuition of the operator. It is thus dangerous in
the sense that used with abandon the operator may be doing the
design himself thus defeating the purpose of writing a synthesis
program, This method does not have any added advantage and it is

felt that a more definite criterion should be developede

8oli  Efficiency of Operation

Aside from having the ability to solve the synthesis problem
it is important to have an efficient method so that the amount of
computer time consumed is not excessive, Running times for the
results presented here ranged from four to eight hours per path on
the Burroughs 220 Computer. This corresponds to from about one
thousand to two thousand design cycles, which is excessive when

compared with the three or four used in practice., As discussed
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above better method of alternate step would certainly improve
this efficiency, but the methods of steep descent should also be

investigateds

8s5 Steep Descent

In Ref, 1 it is pointed out that the convergence to a bound
design in steep descent was slow., In the work done here an
accelerated steep descent mode of travel is used. This is found
to have no effect on the convergence time since the distances are
in general short and the major portion of the running time is
spent in refining the increment so that a bound design is
obtained,

The gradient method of steep descent is the most efficient
of the three used here. The corner direction is used only as a
first try in order to avoid hitting the H, by compatibility bound,
This bound is very difficult to move away from. The only way in
which the program accomplished this was to arrive at a design, in
alternate step, where the stiffener spacings were enough larger
than the stiffener widths to allow gradient steep descent away

from this bound,.
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Appendix I

PIATE ANALYSIS AND SIDE CONSTRAINTS

A.,1.1  This appendix is a presentation of the equations necessary
to write a computer program which analyzes a given rectangular
waffle plate with orthogonal stiffeners which satisfies all side
constraints, No detailed derivations or explanations of the

equations are presented,

A.1,2 Orthotropic Plate Equations

By using equivalent elastic constants the gross instability
of the waffle plate my be treated as that of an orthotropic plate
with the same boundary conditions. Formulas for these constants
have been derived in Ref. 3. - The waffle plate has simply
supported edges and is loaded by any combination of inplane 1oadsi
Nx’ Ny’ and ny, The interaction expression proposed in Refe 1s)

has been used for the work presented here, That is

N N N 2
( == * + (——%—X ) o= 1 (A.1)
W Tli‘my . i}

x’cr xy’cr

For the case of biaxial loading with no shear the expression

N N
X J =
Nx er Ny'cr

gives an exact solution to the orthotropic plate equation if both

(Nx)cr and (Ny)cr are required to be in the same buckling mode,



51

To find (M ) _ and (W) the above expression is written in
x’cr yer

the following forms:

N
N* W) (Ae3)

y (Ny) T
N = 1 - 3 . ) (A-o,-l-)
B + (B' ¢ ~ )

where

2  cemr—
/D 2n” D L D
2
(Nx)r e [mz g') '51' * =+ nz (%‘)2\/'1')3"]
2 \/Dl D2 m 1

b
(Ae5)
2 2
1 \/D.D D 2m D
), =——[" @/ 5o+ —=+ n, = @
r a 1 D:L D2
(A.6)
~ N
B = NX (Ao7)
X

and (N ) and (N ) are the values of the above for the critical
x’cr y'cr

mode given by mand n, (see Ref, li) The critical values of m and n

are obtained by finding their values such that the smallest

positive value of N* is obtained when Nx is compressive or Ny

Zero, Or NY when Nx is tensile or zero. D, and Dz are the

flexural rigidities and D3 is the torsional rigiditye.
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Ref., 5 presents expressions for critical values of shear

load N 3
Xy
3
C W/ DD
Xy b 2
()

where (Ca)cr is the minimm of the two following expressions:

b <r>(q+1,2)1/2 2
C, =TT {[ 2(q+l)[;| }{['2"3_?‘1”1

2
['9'6'%?{,77 ¥ 25'<o9(<1, 3) ] * ['z'?ﬁ‘%

..1./2
[9cp (q1+2, I) ¥ Z5e (ng, 3) ]} |

(4.9)

which holds for symetric buckling with q odd or antisymmetric

with q even. For symmetric buckling with q even or anti-

symmetric buckling with q odd.

L
R R tacear R e el

2
25 ¢ (q +1, 3) (2g+1)2 ¢ (g, 2)

(q + 2)2 -1/2 (A‘lo)
(20 + 3)% 09 (g + 2, 2)]} '

where

i 2 2
¢ (myn) = (mB) + 2(mg) n_ o, b

/P
D2

w
i
pjo



A.l,3 Equivalent Elastic Constants

The equivalent elastic constants used here are specialized
from those given in Ref., 3. The assumptions and restrictions
required to arrive at these expressions are stated in Ref. 1.

The expressions for the flexural and torsional rigidities are:

D. = EH [IX - ASE £ (l;X)z]

-2
3 I
_ EBH )
Dy = = [2-2+Ixy]
A
s
where
I
t =3 W, t
IX_ = = 2 (_Hg) + X3+ 21 2 -ﬁi
12 (1 - p°) b_H hAX(l-u)
AW 2 AW AW
x 1 X 1 bid
(=) * T 5% [l Ax(byH)]
T
t 3 W t
I - L (8 o+ L s L 2
12 (1 =u") bXH hAy(l-u)
A A A




S y s
AW
- 1 X
K = 75 5@
b y
AW
k =2§ bI:->1r
y v -
AS AWX
A = +
X b H
v y
AS Awy
A = +
y ) bX H
u bs
A =
s 1 - Hz H
12=152+AAA121<Y

= s s s x7y °x

I - 1 ( tS )3
Xy 6 (1 + ) H
Then within these constants the following definitions are needed

to obtain the equivalent elastic constants in terms of the design

parameters
wa 1 ts ° tWX
s = 1 O - 7)) =5
b_H
v y
I t
1) t. 3 w
3 'i'é"(l H)‘BX
bx H X
AWX ts twk
= =@ - ) 5



A t
W t W
b H H b
X X
v ts .
Is 6 (1 +p) ( H )

A.l.li Iocal Buckling

Two modeé of local buckling are considered., One is buckling
of the backup sheet while the stiffener remains straight the other
is buckling of the stiffener while the backup sheet remains flat,

Buckling of the backup sheet is considered as buckling of a
rectangular isotropic plate with dimensions of the distances bet-
ween the stiffeners and the thickness of the backup sheet., Here
again the interaction expression (Al) is used, The critical values
for the plate may be obtained by setting D, =D, = D, = D and

making proper substitubtions for a and b in the expressions

(A3 = A.7) for the orthotropic plate, These become :

t t
2 -w - w
- n D 2 .y X 2 2.0 x ]
Nx 2 [ n (b -1 yxo2 * ( b =1 ) Fx
(by - b W m y W,
X
(A.11)
t t
2 b = wW_o» L b -"w_ =2
N = —2* D 2[n2(52<..ﬁ_z)+2m2+_§(gy____€£)]3‘
y (b. =t_) W, ple W ¥
x - W x ¥
5 (A.12)
E b
D = s




56

where FX and Fy are factors which take into account that only

a portion of the load is carried by the sheet

H
T = 1 = (1l - e
y ( ts) bx
tw
Fx = 1-0 - g;) bX
S y
~ ~ FX
s = B 7
Yy
With similar substitutions the shear buckling equation becomes
i ) L Ca D
Xy ~ 2 (4,13)
b
o~
where in this case b is the smaller of the values bX - tw or

y

by - tw and the Ca are the same as before with
X

hoe]
B
Lo
D
i
a

p (myn) = [(mg)z £ 0 ]2
a

It should be noted here that all the shear is considered to
be carried by the backup sheet and thus there is no reduction
factore.

The stiffeners are considered as rectangular plates simply
supported on three edges and free on the other., The critical
values for buckling of the stiffener are given by the foilcwing

expression: (see Ref, 6)



- F (t )
b H =t
o) - :k [ - s ., . s ] 1 .
Q- " y © (-t
He-t :
[ G—=) + o5 ] (010)
y oW, |
2 t Het
(N ) - =T E (t ? S + S .l
y cr 12 (l - [le) Wy_ [twy bX ] (H - ts)z
H- %
[—) + ouis] (A.15)
Yy W

X

A.1.5 Material Yield

The material yield criterion is employed as a cutoff to the
elastic buckling analysis. Three types of yield are possible.
The stiffener in the x direction may yieldy the stiffener in the
y direction may yield or the backup sheet may yield. The x

stiffener yield condition is

b
o = |N ‘ A (4,16)
o p e B; ts + tw (H tSI
X A
The y stiffener yield condition is
x (4017)
g = |Nl - - Aol7
0 y bX ts + twy (H ts) :

where the absolute value signs are used to take into account
tension or compression., By substituting the principle stresses
into the distortion energy yield criterion the condition for

yield of the backup sheet becomes: (see Refo 1)
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2 2 - 2 2
o] - 0o _O0_ + O + 3O = O
b d Xy y Xy o

Then in terms of the load and the design parameter this becomes

2 2

N, by ) N, Ny by_bx
N
(by_ts-+tw (u -1%)) (byts-ftw (" - ts»(bxts+tw GL-ts))
x p's v
2 2
N b N 2

. y X 2+3 (FL) = o (a.18)

(bx by * twy(H - tS)) s .

A,1+6 Side Constraints

The side constraints which must be imposed on the plate
designs arise from four different situations. These are
le Bounds imposed by the limits of the manufacturing
processes,
2+ Bounds imposed by the applicability of the analysis,
3+ Compatibility bounds to exclude physically absurd
designs, |

lie Bounds imposed by the use of the plate.

The bounds imposed by>the limits of the manufacturing
process are lower bounds on stiffener thickness and spacing. The
bounds imposed by the limits on the analysis are the minimum
nurber of stiffener,

Compatibility bounds arise where the stiffener width must be
less than the corresponding stiffener spacing and the thickness of
the sheet must be less than the total depth of the shéetal

The bound imposed by use of the plate is the total depth

of the plate,
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Appendix II

COMPUTER PROGRAM

Al2,2 The description of the computer program used for
production is presented here. This is the program using the
alternate base planes method, This and the other programs were
written in Runcible (see Ref, 8) compiler language.

The required input for the program is the following list in

Runcible notation:

A.2,2 INPUT DATA

o= b
v =
Bo= b | DESIGN PARAMETERS
W = b
b y
5 = tw
X
6 =
Wy)
Y7 = E N
8 = p
9 = b PREDETERMINED CONSTANTS
Y0 = e
Tl = 5,
Yi?2 = Go
Yi3 = a
Yih = b )



Y26 - Y30 = le I\IXz ses
31 - Y35 = 7, v,
Y36 - YO = xy, N, y, eoe
W1 o= (b)) .,
2 = Hoox
w5 = (tw}Zmin
W6 = (% Ws)rmi N
c68 = (bx)min
C69 = (by) min
C70 = t_ scale factor
C7l = H s‘cale factor
C72 = bX scale factor
C73 = by scale factor
CTh = tw scale factor
C75 = t Wx scale factor
y

I13 = NUMBER OF LOAD CONDITIONS
A typical set of input data is presented in Fige 9e

Ac.2.3 OUTPUT DATA
The design parameters are the same as above (Yl=-Y6). The

behavior functions are the following:

Y53 - Y57 = GY (Dp)
Y58 - Y62 = SX (0,)
Y63 - Y67 = SY (Dp)



Y68
Y73
Y78
Y83

I15

125

- 182

wh] -

- Y72 = GBF (DP)
- Y77 = LBP (Dp)

LBX (Dp)

- Y87 = IBY (Dp)

« Base Plane Indicator

- Weight

A typical set of output is presented in Fig. 10,

Ae2.ts  The operation of the program is presented in Figs. 1l and

12, The list below provides additional information concerning

this operation.

G

®

refers to acceptable design

refers to unacceptable design

is a cycle counter (1 is the initial cycle)
no

yes

means unbounded

steep descent increment

smallest steep descent increment

allowed, a fraction of §, 1/10, 1/100, 1/1000 or 1/10,000.

This is an option on control switches 1 thru L respec=

tive ly.

t , is the distance of travel to the side constraints.

When running the program one of the control switches one thru

four should be set to determine the increment tolerance in steep
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descent. The program is in two seégments with a small data
processing portion in the first segment. Program control switch
5 will cause segment one t0 be read when the program is operating
in segment two., After reading the data at the beginning of
operation the data is then printed. All designs which are tested
for behavior function violation in the alternate step mode are
printed (locations Y1 - Y6 as above)s The behavior function for
these are not printeds In steep descent only the last bound
design is printed and the behavior functions are printed for this

design. A listing of the computer program follows,.



200017006
200077001,
200087007
2002670013
200317013
200367003
200417002
200457002
300687002
300707001
300717001
300727001
300737001
300747001
300757001

100137001

+6040000000
+5530000000
+5N27/ONONN
-5030000000
-5N30000000
+5000000000
+4850000000
+4910000000
+5120000000
+4910000000
+5010000000
+5110000000
+5110000000
+5010000000
+5010000000

+0000000003

+50&000DND0O

+80220N00N0D
+5C50000000
~5060000000
~-5110000000
+5050000000
+4910000000

+5120000000

FIGURE 9 TYPICAL CASE OF INPUT DATA

~B5=

45150000000 £51850N00000 +5140000000 +5140000000

+471N0000NN 449100NN0NON £5315000000 +5270000000 +5250000000

-5110000000
+50000N00000

=5040000000



000 13004 RECALL RUNCIHBLE PROGRAM
+1200017007 +4947452284 +5049998960
~1200087007 +5027600000 +50281300000
~1200267005 ~5030000000 +5050000000
~1200317008 ~5030000000 ~5060000000
=1200367005% +5000000000 -5110000000
~1200417006 +4850000000 +5050000000
~1300687002 +5120000000 +5120000000
«1100134084 +0000000003 +0100250000
-1200017006 +4947452284 +5049998960
=-12N005370013 +4915786293 +5024843201
-12005870013 +4916099975 +4926833292
~1200637003 44915452701 +4930905402
-1200687003 +5084262951 +5064074420
-12007370013 +5026069304 +5036866252
~12007870013 +4696969139 ~4716161523
-1200837003 +46436990%7 +4687398074
~1100154041%3 +0000000000 +0NN0ON0000
~1200254031 +5318575402 +0000060000
=1100244075 +0000000000 +0000000000

-88=

+5152687526
+4710000000
~5110000000
+5000000000
=5040000000
+5214000000
+0000000000
+0000000000

+5152687526
+5011115009
+4953666584
+0000000000
+5110000500
+5035799244
+4732323046
+0000000000
+0000000000
+0000C00C00
+0000000000

+5138927718
+4910000000
+0000000000
+0000000000
+0000000000
+5210000000
+0000000000
+0000000000

+5138927718
+0000000000
+0000000000
+0000000000
40000000000
+0000000000
+0000000000
+0000000000
40000000000
+0000000000
+0000000000

FIGURE 10 TYPICAL CASE OF

+5066039628
+5315000000
+0000000000
+0000000000
+0000000000
+4910000000
+0000000000
+0000000000

+5066039628
+0000000000
40000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+3000000000
+0000000000

OUTPUT

+5095440880
+5270000000
+0000000000
+0000000000
+0000000000
44910000000
+0000000000
+0000000000

+5095440880
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000

FEB 19 17 39
+5530000000
+5250000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+00000060000

+0000000000
+0000000000
+0000000000
40000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
+0000000000
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~65=

QUNCI 235 3133 13004
N00NONNSENN0NN001000N0NN0NN00NN000N0I0
6e D = W=7 8
RNG RANDOM NUMBER
000N 80410180019
nNNO1 80000340020
0002 800004N0018
0003 80000420018
0004 90000100014
0005 80000140013
0006 90001400014
0007 00001490010
0008 00000480002
nno9 80000120012
0010 80000220012
0011 00000304899
NnO12 05000000000
N013 09677214061
0014 06250739481
n01% 03849370523
0016 00000000007
0017 06843575629
N018 0000NOONNND
0019 00000000004
0020 00033444352
0021 00000304313
RNG END OF RANDOM NUMBER
PCS PROGRAM CONTROL SWITCH TEST
NONO DOONN4INONG 81110400002 B8ONNN3BNANNGE ONNNTA50000
0004 000003N4899 ROKONINO00T 00N0N304899 GONONONNNOT

PCS END OF PCS TEST SUBROUTINE

noo READ F
000 17=0 F
000 18=0 F
0non 19=0 F
000 110=0 F
000 111=3 F
000 112=1000 F
000 114=0 ¥
000 115=0 F
000 116=0 F
000 117=0 F
000 118=1 F
000 119=117 F
000 120=0 F
000 121=0 F
000 123=0 F
000 124=0 F
000 8791050519113 =15 F
087 C{79+10)=Y(31+10)/Y(26+10) F
000 PUNCH C78 THRU (82 F
noo Y43=Y13/5 F
000 ¥Y15=Y8XY13XY1l4 F
000 Yab=Y14/5 F
000 C53=Y11 F
000 C5=(341415927)P2 £
000 C9=14/11e~(Y3P2)) F
057 PUNCH Y1 THRU Y14 F
058 PUNCH Y26 THRU Y30 F
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66

059 PUNCH Y31 THRU Y35 F
080 PUNCH Y36 THRU Y40 F
082 PUNCH Y41 THRU Y46 F
083 PUNCH €68 THRU C69 F
084 PUNCH 113 PUNCH 125 F
000 READ SEGMENT 2 F
000 SEGMENT 2 F
000000055000000010000000000900000000090
6 D = W= 7 8

RNG RANDOM NUMBER

0000 80410180019

0001 80000340020

0002 80000400018

0003 80000420018

0004 90000100014

0005 80000140013

0006 90001400014

0007 00001490010

0008 00000480002

0009 80000120012

0010 80000220012

0011 00000304899

0012 05000000000

0013 09677214091

0014 06250739481

0015 03849370523

0016 00000000007

0017 06843575629

0018 00000000000

0019 00000000004

0020 00033444352

0021 00000304313
RNG END OF RANDOM NUMBER
PCs PROGRAM CONTROL SWITCH TEST

0000 ‘00000490009 81110400002 80000380005 00001450000

‘0004 00000304899 80000100007 00000304899 00000000001
PCS END OF PCS TEST SUBROUTINE
037 CT=Y5/Y4 F
000 C8=Y6/Y3 F
000 C4=Y1/Y2 F
000 C6=140-C& | F
000 GO TO 38 IF I7U0 F
000 Y47=Y25/Y15 F
000 Y48=1.0-C7 F
000 Y49=1.0-C8 F
000 Y50=Y2~Y1 F
000 Y51=Y3-Y6 F
000 Y52=Y4-Y5 F
000 Y53=(Y47-Y1}/Y50 F
000 GO TO (45+115) F
045 Y1=(Y4T+Y2X(=CT-C8+CTXC8))/
045 Y4BXY49 F
000 GO TO 38 F
046 Y2=(Y4T-Y1IXY4BXY49 )/
046 1.0-Y48XY49 F
000 GO TO 38 F
047 Y3=Y6XY48/{Y53~CT) F
000 GO TO 38 F
048 Y4=Y5XY49/(Y53=C8) F
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000
049
000
050
038
000
000
000
000
000
000
000
000
039
000
000
000
000
000
000
000
000
000
000
000
000
040
000
000
061
000
000
000
000
062
000
001
000
oo
000
coo
000
000
000
000
000
000
000
000
000
002
002
002
000
000
000
000
000
000
000

-67-

GO TO 38
¥Y5=y4X(Y53~-C8) /Y49

GO TO 38
Y6=Y3X(Y53~CT7)/Y48

15=0

16=0

C7=Y5/Y4

C8=Y6/Y3

Ca=Y1/Y2

C6=1,0-C4

18=18+1

16=1 IF Y41 V Y1
394510905192
16=11FY(2+10)VY(42+10)
16=11FY&45VY5

16=11FY&6VY6

16=11FY1lVY2

16=11FY5VY4

16=11FY6VY3

16=1 IF C68 V Y3

16=1 IF C69 V Y4
GOTO241IF16U1IFITUOIFIBUL
GO TO 25 IF 16Ul IF 17Ul
GO TO 23 If 16Ul IF 17U0
15=11FY10VY1l-Y41
40510919192

I5=11F Y1OVY(42+10)=-Y(2+]10)
15=11FY10VY5-Y45
I15=11FY10VY6-Y46

PUNCH Y1 THRU Y6 IF I7 U 1
READ SEGMENT 1 IF

QPCSFs5Q U 1

GO TO 64 IF Y10 V C55-C54
IF Y10 V Y2 ~Y1
1910909191y
C{10+10)=C6XC(7+10)
C(12+410)=(C6P3)XC(7+10)/12
Cl4=(C4P3)/(14Y91X12
C15=Y9XC9I9XC4
Cl6=(C4P3)XYIXC9/12
C17=C10+CIXC4
C18=C114CIXC4
C19=({C17XC18)~-(C15P2)
C20=(C16/Y9)+C12+
(COXCaxX(C1OP2) /74X (C1TP2))+
ClOX((10~(C10O/C1T7)IP2)/4
C21=(C16/Y9)+C13+
(COXCaX(Cr1P2)/74X(C18P2) )+
CliX((le0~(C1l1/C18))P2)/4 F
2910909191 F
Cl14+10)=YTX(Y2P3)X{(C(20+10)
-((C15P2)X(C(10+10)P2)/4X
CloOXCt17+10)))
C3=Y7X({Y2P3)X(C16+{C15X
CloXCl1/74XC19)1+4C14)

PUNCH C1 THRU C21
C86=1¢0-10/C4
C84=1.0~C7XC86
C85=1.0-C8XC86
C22=QRT2E»C1/C2Q

MM TmMTTTTITAITMTITTITMTTTTTITI M ITTTT MMM T M T T YT
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n
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000
000
000
000
000
000
000
000
006
000
007
000
000
000
008
008
008
000
000
000
000
000
000
000
000
000
009
000
000
000

000

000
ono
000
010
000
011
000
000
000
000
000
012
000
000
000
000
000
000
000
000
000
000
000

000 -

073
000
000
000
000

~68=

C23=1/C22
C25=2XC3/QRT2EsC1XC2Q
Y16=Y13/Y14
C24=QRT2E+C1XC2Q/C3
C21=QRTZEsC22Q
12510905101
C31=C21/Y16
C31=1/C31IFC31V1.0
11911909191

12=0
C(26+11+2X10)=C30
12=12+1

8313509192,
8145149193

2l Bt ettt T M T M 1 B £ e £ 2§

C{31+14+43XI3)=(((12+13)XC31)
Par+(2xt((12+13)XC31X14)P2)/

C24)+14P4
GO TO 9 IF 11 U 1

F
F

C41=QRT2EC36Q/2X(12+1)XC31F

Ca2=(12/7((2X12)+1.)1P2
C43=(1/9XC32)+9/25XC34

Ca4=((1242)/7((2X12)+3))P2

C45=(1/9%xC38)1+9/25XC40
C30=C41/

QRT2E» (C42XC43)+(C44XC45)Q

GO TO 10
Cal1=1/2X(12+1)1XC31
C42=(1/9XC35)+9/725XC37
C43=(12P2)/
(((2X12)+1)P2)XC33
Ca4=((1242)P2)/
(((2XI12)+3)P2)XC39
C30=C41/QRT2E+C42X
(C43+C44)Q

Cl26+11+2X10)=C30IF 12 Ul

mmmm™m

F
F

GO TO 7 IFC(26+11+2XI10)WC30F

CAS

C{26+2X10)=C(27+2XI0)IF

CL26+42X10)vC(27+2X10)
C24=1

Cc21=1
Y16=(Y3-Y6)/Y4-Y5
LOCAL CAS

C31=1/Y16

10=0

10=11IFC31V1.0
C20=Y7X(Y1P3)XC9/12
Y20=C28XC20X(C5P2)/

32X((Y(4-10)-Y(5+10))P2)
C31=Y14X((C1/C2)P0+25)/Y13

10=1
10=0 IF C31V 1.0
Y19=(C26X(C5P21X

(C(2-10)XC(1+10)P3)P025)/

32XY(13+10)P2
18951190519 113-1,

GO TO 67 IF Y(26+11) U 0.0

IF Y{31+11)1U0.0
C22=QRT2EsC1/C2Q
C23=1/C22

F

o T B M 4 W 4 M 2 S 2 W £ M1

mm™m T Tm

mmm
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000
noon
000
000
000
000
000
000
074
000
000
000
070
071
000
000
000
076
000
013
000
000
004
000
003
063
000
000
000
000
000
000
000
000
000
000
077
000
000
068
000
000
000
000
000
079
000
000
000
000
005
000
000
000
000
000
000
000
000
000

=59 =

C25=2XC3/QRT2E+C1XxC2Q
PUNCHC22 THRU (25
Yl6=Y13/Y14
1551090911
C87=C(79+11)
C87=C87XC84/C8B5

IF Ioul

GO TO 70 IF Y(26+11)W0.0
C29=1.0

C30=C87

117=0

GO TO 76

GO TO 74 IF Y(31+411)1U0.0
C29=1.0/C87

C29=0s0 IF Y(26+11)U0O
C30=1.0

117=1

127=0

13=0

127=127+5%

127=1 IF Y{(26+I1) U 0.0
HALT 2 IF 127 U 20
13=13+1

12=0

Cc27=C28

12=12+1
C28=((C22X(12/Y16)P2)

mTmTTm™m

mMTTMmMTTTTTTM M T MM TMTTTTTm M ™

+(C25X(13P2))+{(C23X(Y16/12)

P2)X13P4))/C29+C30X
((13XY16/12)P2)

PUNCH €28

PUNCH 10 THRU 13

GO TO 77 IF C28V0.0

GO TO 3 IF 117 U 0
C27=C28 IF I3ul

GO TO 68 . _

GO TO 3 IF 040V C27

GO TO 3 IF 12 Ul

GO TO 3 IF C27 Vv C28
Y(52413)=C27
1(27+13)=12-1

GO TO 4 IF 127 V I3
PUNCH Y53 THRU Y(53+127)
PUNCH 127 THRU 1(28+127)
13=0

13=1341

C28=Y(52+13)

GO TO 79 IF 00 V Y(52+13)

Sel144s13919127=1>»
13=14+1 IF C28 V Y(53+14)

Bt e B2 B Bt it B e £ i et 2 Mt B B Bt T T B L B B

C28=Y(53+14) IFC28VY(53+14)F
GO TO 13 I FI3ul27 IF [27V1F

12=1(27+13)

PUNCH 10 THRU 13
14914505151
C26=C(22+14)X(1(2+14)/
Y16)P2
C27=C25X(1(3-14)P2)
C28=C(23-I4)X((1(3-14)P2)
XY16/1(2+14))P2

F
F
F

F
F
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=70~

000 C29=Y(14=-14)P2 F
000 C29=((Y(4~T4)=Y(5+14))P2)/
000 C(84+14) IF IO U 1 F
000 C30=QRT2E+C1XC2Q F
000 €30=C20 IF Ioul F
000 PUNCH C26 THRU C30 F
000 Y16=1.0/Y16 F
014 Y(17+414+4X10)==-C5XC30X

014 (C26+C27+C28)/C29 F
000 C22=1.0 F
000 C23=1.0 £
000 C25=2.0 F
015 Y16=(Y3-Y6)/Y4-Y5 F
000 PUNCH Y17 THRU Y22 F
067 1851050919l F
000 Y(68+I11+5XI0)=(Y(26+11)/

000 Y(1T+4X10))+(Y(31+11)

000 /Y(18+4X10))+(Y(36+I1)/

000 Y(19+10))P2 F
000 PUNCH Y68 THRU Y77 F
000 GO TO 18 IF (1.0-Y10)V

000 Y(68+11+5X10) F
000 GO TO 24 IF ‘
000 Alle0-Y(68+1145XI10))VY10 F
000 15=1 F
018 BYPASS F
000 C19=Y4=-Y5 F
000 C18=Y3-Y6 F
000 Cl17=Y2~Y1 F
000 16510909191 F
000 C(15+10)=YTX(Y(5+10)P3)}X

000 C9/712 F
016 Y(23+10)==C5XC(15+10)X

016 ((Y1/Y(5410))14C177Y(4=-10))X
016 ({(C17/C(18+10))IP2)+0+425)/
016 c17P2 _ F
000 C10=Y4/{ (Y4XYL)+Y5XC1T) F
000 C11=Y3/{ (Y3XY1)+Y6XC1T) F
000 C12=C10P2 F
000 C13=C10XC11 F
000 Cl14=C11P?2 F
000 1751090019113 =1 F
000 Y(53+10)=(((Y(26+10)P2)XC12)
000 —(Y(26+10)XY(31+10)XC13)+
000 ((Y(31+410)P2)IXCl4)+

000 3X(Y(36+10)/Y1IP2) F
000 Y(53+10)=

000 QRT2Es.Y(53410)/(Y12P2)Q F
000 Y(58+10)=AY(26+10)XCl0/Y12 F
017 Y(63+10)=AY(31+101XC11/Y12 F
000 20910909151 F
000 2001150919113 =1, F
000 Y(78+11+5X10)=Y(26+11+5XI10)/
000 Y(23+10) F
000 GO TO 19 IF (1.0-Y10)V

000 Y(78+11+5X10) F
000 GO TO 24 IF

000 AlleO-Y(78+1145XI0V)IVY10 F
000 15=1 F

019 GO TO 20 IF (1e0-Y10)V
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019
000
000
000
020
000
000
000
000
000
000
021
000
000
081
000
000
000
000
000
000
000
000
000
000
000
00o
000
064

~ 000

000
000
000
000
000
000
078
000
053
000
000
054
065
000

000

000
000
000
000
056
000
022
069
055
055
000
023
000
000
024

=71-

Y(58+11+5X10)
GO TO 24 IF

A(140=-Y(584+11+5XI0))IVY10
15=1

BYPASS
2191190519113 ~1

GO TO 21 IF (1.0-Y10)
VY (53+11)

GO TO 24 IF
Alls0=-Y{(53+11))VY10
15=1

BYPASS

17=0

126=0.0

126=1 IF QPCSF46Q U 1
C77=Y5/Y4

C78=Y6/Y3
Y25=Y8XY13XY1l4XY2X
(1e0~CHX(140-C7TIX(160-C8)}
GO TO 64 IF 110 V O

GO TO 65 IF 18 VvV 1
C62=Y1=-Y41

C63=Y2-Y41

Cb4=Y3-Y43

C65=Y4~Y44

C66=Y5-Y45

C6T=Y6~-Y46

GO TO 78

C44=1.0-C7

Ca5=1,0~-C8

C62=C44XC45
C63=1,0-C62
C64==-C44XCOXCBXY2/Y3
C65=-C45XCOXCTXY2/Y4
C66=C45XCOEXY2/Y4
C6T7=Ca4uXC6XY2/Y3
C41=0.0

53510909195
C41=C41+C(62+101)P2
C41=QRT2EsC41Q
544108091959
C(62410)=C(62+10)/C41
GO 70 34 IF 15Ul

118=1 IF QPCSFs1Q U 1
118=10 IF QPCSFs2Q U 1
118=100 IF QPCSFs3Q U 1
118=10000 IF QPCSFs4QU1
GO TO 34 IF Y11/118 W (53
56910909195
C(54+10)=Y(1+I0)

GO TO 23 IF 116U1
C53=24,0XC53
55510380915
Y(1410}=C(54+410)~
C53xC(62+10)

GO TO 38

C53=C53/2.0

116=1

GO TO 69

HALT 0 IF 1 W I8

MMM

M

MMM MM ™
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000
000
025
041
000
000
026
000
000
052
000
000
000
027
000
000
000
000
000
000
000
000
000
000
000
051
000
000
028
000
000
066
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

=72=

GO TO 34 IF 1 W I8

GO TO 23 IF 17U0

GO TO 32 IF 111VI9

19=0

114=114+1

GO TO 25 IF 11401

114=0

HALT 1 IF 110 U I12
110=110+1

115=115+1

115=0 IF 115 W 6
275108091955
Cla6+10)=({2XQRNGE+1Q)~140
Cl46+10)=C(46+10)XCLT70+10)
121=1

124=124+1

C50=0.0 IF [26U1

C51=0.,0 IF 126Ul

C47=060 IF Y10 V C55-C54
1F C63 VvV C62

115=0.0 IF Y10 Vv(C55-C54
C48=0.0 IF Y10 V C56-C59
115=5 IF Y10 Vv C56-C59
C49=0.0 IF Y10 V C57 -C58
115=4 I1F Y10 Vv C57-C58
Cl46+4115)=0.0

C43=0.0

2891090915
C43=C43+C(46+10)P2
C43=QRT2E+C43Q
665103091959
Cla6+410)=C(46+10)/C43
PUNCH C46 THRU C51

PUNCH 115 THRU [22
C32=Y42-C55

C33=Y43-C56

C34=Y44-C57

C35=C58~-Y45

C36=C59-Y46
C37=C55-Y25/Y15
C38=C56~C59~Y46
C39=C57-C58=-Y45
C40=C54-Y41

C41=C55-C54
C41=(Y25/Y15)=-C54 IF 115 Ul
C42=C56-C68

C43=C57-C69

Y53=C47

Y54=C48

Y55=C49

Y56=~C50

Y57=-C51

Y58=000

Y58=~C47 IF 115 U O
Y59=C51-C48

¥Y59=0.,0 IF 115 U5
Y59=0,0 IF 115 U 2
Y60=C50-C49

Y60=0.0 1F 115U4

Y60=0.,0 IF 115 U 3
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000
000
000
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~73=

Y61=-C46
Y62=C46-C47
Y62=C461F 115 U 1
Y62=0.0 IF 115 U 0O
Y63=-C4u8

Y64=-C49
444109051911
Y{53+10)=0.0IFY(53+10)U=00
425109091911
C45=C(32+10)/7Y(53+10)
C60=C45 I1F Y(53+10)V0.0
C61=C45 IF 0s0 V. Y(53+I0)
309109031911
C45=C(32+10)/Y(53+10)
PUNCH C45

GO TO 29 IF 0.0 W Y{(53+10)
C60=C45 IF C60 V (45

GO TO 30 IF Y(53+10) W00
C61=C45 IF Ca5 V C61
BYPASS
C32=C{60+114)XQRNGE»2Q
334510909195
Y(1+10)=C(54+10)}+
C32XClL46+10)

Y5=C7T7XY4 1F 126U1
Y6=C78XY3 IF 126U1
19=19+1

GO TO 41 IF Y10 V A C32
GO TO 37

PUNCH Y1 THRU Yé
35510909196

PUNCH Y(53+5X10) THRU
Y(52+113+5X10)

PUNCH 115

PUNCH Y25

PUNCH 124

36510909195,
C(54+10)=Y(1+I0)

C53=Y11

17=1

19=0

114=0

116=0

124=0

GO TO 26

MMM AT T T T T T M T T MM

MM M T ™

TTM T T TMTIT MMM T T ™M

n



READ

DATA

CALCULATE
(Nxy)cr
GROSS&LOCAL

CALCULATE (Nx)cr8&(Nycr
GROSS & LOCAL

CALCULATE AND TEST
GBF (Dp)& LBP (Dp)

CALCULATE AND TEST
L 8X, LBY, SX, SY

FIGURE I

INITIALIZE
COUNTERS

CALCULATE
RIGIDITIES

TEST DESIGN
PARAMETERS

©

DESIGN
UNACCEPTABLE

o

DESIGN
ACCEPTABLE

[—@—_@J’ CALCULATE AND TESTJ
GY

WAFFLE ANALYSIS



START

WAFFLE
ANALYSIS

CALCULATE GRADIENT
STEEP DESCENT VECTOR

!

CALCULATE CORNER
STEEP DESCENT VECTOR

TEST FOR BOUNDED l

DESIGN

SELECT
INCREMENT

GENERATE

NO ZLIMIT

TEST NO. OF
TRIAL ON ¢

| NEW DESIGN

BOTH TESTED

®

STORE
DESIGN

PRINT DESIGN

1

NO<LIMIT

GENERATE
NEW DESIGN

FIGURE

!

TAKE RANDOM
FRACTION OF t

E

GENERAT
DIRECTION

RANDOM

SELECT

BASE PLANE

12 ALTERNATE BASE PLANES METHOD




